

Titration von Säure in Milch

Beschreibung

Diese Methode wird zur Bestimmung des Säuregehalts (Säuregrad) in Milch und Milcherzeugnissen verwendet. Der Säuregrad wird entweder als SH-, Dornic- oder Themer-Grad berechnet. Für die verschiedenen Einheiten werden unterschiedliche NaOH-Konzentrationen verwendet. Der Säuregrad gibt den Verbrauch einer definierten NaOH-Lösung pro 100 mL Milch an.

Geräte

Titrator	TL 5000 or higher
Elektrode	N 62 der A 162-2M-DIN-ID oder ähnliche
Cable	L1A (nur für Elektroden mit Steckkopf nötig)
Stirrer	TM 235
Laborgeräte	Bechergläser 50mL
	Magnetrührstäbchen 30 mm

Reagenzien

1	Natronlauge 0.25 (SH), 0.111 (Dornic) oder 0.1 mol/l (Therner)		
2	DIN/NIST Puffer pH 4.01 oder technischer Puffer 4.00		
3	DIN/NIST Puffer pH 6.87 oder technischer Puffer 7.00		
4	KCl Elektrolyt3 mol/l		
5	Natronkalk (CO2 – Absorptionsmittel)		
Alle Reagenzien sollten mindestens analysenrein sein			

[°]SH = mI_{NaOH 0,25 mol/I} / 100 mL Milch

 $^{^{\}circ}D = mI_{NaOH \ 0,111 \ mol/l} / \ 100 \ mL \ Milch$

 $^{^{\}circ}$ Th = mI_{NaOH 0,1 mol/l} / 100 mL Milch

Durchführung der Titration

Reagenzien

NaOH 0,1 oder 0,111 oder 0,25mol/L

NaOH ist als fertige Maßlösung erhältlich.

Natronlauge nimmt schnell CO₂ aus der Luft auf und wird dadurch unbrauchbar. Die Lösung muss deshalb mit einem CO₂-Absorptionsmittel wie Natronkalk vor CO₂ geschützt werden. Hierzu wird auf die Vorratsflasche ein mit Natronkalk gefülltes Trockenröhrchen gesteckt.

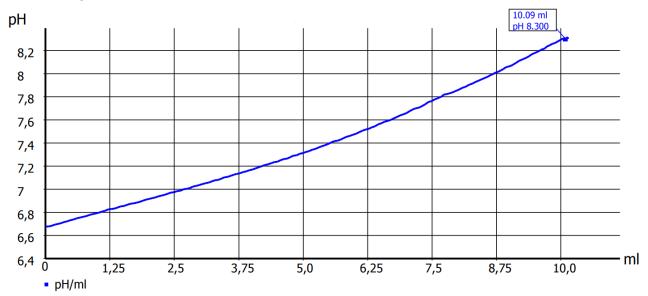
Die Titerbestimmung erfolgt wie in der Applikation "Titer NaOH" beschrieben.

Reinigung der Elektrode

Die Elektrode wird mit destilliertem Wasser gereinigt. Für die Lagerung der Elektrode eignet sich die Elektrolytlösung L300.

Die Elektrode muss regelmäßig (wöchentlich) kalibriert werden, z.B. mit den Puffern pH 4 und pH 7. Elektroden mit einer Steilheit <95% müssen ausgetauscht werden.

Probenvorbereitung


10 - 100 ml (je nach Säuregehalt, für Frischmilch sind 25 - 50 ml gut geeignet) der Probe werden in ein Becherglas pipettiert. Für °D und °Th wird die doppelte Menge destilliertes, CO₂-freies Wasser zugegeben. Die Titration wird mit Natriumhydroxid bis zum Endpunkt pH 8,3 (oder einem anderen Endpunkt, je nach Norm) durchgeführt. Die Probenmenge und Konzentration der NaOH hängen von der Norm ab:

Einheit	С _{NaOH} [mol/l]	Verdünnung mit Wasser Probe : Wasser
°SH	0.25	-
°Dornic	0.11	1:2
°Therner	0.1	1:2

Es ist auch möglich, °SH oder °Dornic mit 0,1 mol/l NaOH zu titrieren, aber die Konzentration der NaOH muss bei der Berechnung berücksichtigt werden. Die Berechnung in dieser Applikationsvorschrift berücksichtigt die Konzentration der NaOH.

xylem | Titration 104 AN 2

Titrationsparameter

Standardmethode			
Methodentyp	Automatische Titration		
Titrationsmodus	Endpunkt		
Messwert	pН		
Messgeschwindigkeit / Drift	normal	Min. Wartezeit	2 s
		Max. Wartezeit	15 s
		Messzeit	2 s
		Drift	20 mV/min
Startwartezeit	0 s		
Lineare Schrittweite	0.05 mL		
Dämpfung	keine	Titrationsrichtung	steigend
Vortitration	aus	Wartezeit	0 s
Endpunkt 1	8.30 pH	Delta Endpunkt	1.0 pH
		Endpunktverzögerung	10 s
Max. Titrationsvolumen	20 mL		
Dosiergeschwindigkeit	20%	Füllgeschwindigkeit	30 s

xylem | Titration 104 AN 3

Berechnung:

Das Ergebnis wird in Grad SH (°SH) berechnet:

$$^{\circ}SH = \frac{(EP1 - B) * T * M * F1}{V * F2}$$

EP1		Consumption of titrant at the end point	
В	0	Blank value	
Т	WA	Actual concentration of the titrant	
М	1	Molecular weight	
V	m	Volume of the sample	
F1	100	Conversion factor	
F2	0,25	Conversion factor	

Für die Berechnung in Grad Dornic (°D) muss F2 angepasst werden auf F2 = 0.111 Für die Berechnung in Grad Thoerner (°Th) muss F2 angepasst werden auf F2 = 0.1

Xylem Analytics Germany Sales GmbH & Co. KG, SI Analytics Erich-Dombrowski-Straße 4 • D-55127 Mainz Tel+ 49 6131 894-5111 TechInfo.xags@xylem.com xylemanalytics.com

